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Abstract

B.v treating the high-momentum gluon and the quark sector as an in

principle calculable effective Lagrangian we obtain a non-perturbati ve vacuum
state for OCD as an infrdred gluon condensate. This vacuum is removed from
the perturbative vacuum by an energy gap and supports a Meissner-Ochsenfeld
effect. It is unstable below a minimum size and it also suggests the
existence of a universal hadroni zation time. This vacuum thus exhibits all

the properties required for color confinement.

I. Introduction

By now it is widely believed that the confinement in QCD, in analogy with

superconductivity, results from the existence of a physical vacuum which is

removed from the remainder of the spectrum by an energy density gap and which

exhibits a Meissner-Ochsenfeld effect. 1 More particularly, it is believed

that these characteristics of the physical vacuum result from the infrared

properties of QCD. With this in mind we will construct in this paper a simple

model for QCD which concentrates on the low-energy part and parametrizes the

high-energy part of the theory, and we will show that this simple model has a

non-perturbati ve solution for the vacuum which indeed possesses the desired

characteristics. Even though this model is extremely simple we believe that

it is sufficiently accurate to reproduce the essential qualitative features of

the QCD vacuum. Furthermore, the accuracy of the model can be improved; in

principle the model could be enlarqed in a strai qht-forward manner to yield

approximations to the actual solution of the QCD vacuum problem, and hence, to

QCD.



The most extensive recent treatments of the confinment problem are based

on the evaluation of Wilson loops. 2 ’ 3 This method avoids the explicit intro-

duction of the structure of the vacuum. The properties of the vacuum itself

are discussed in several papers which show that it can have the character of

a superconductor, i.e., that a superconductive vacuum is compatible with

QCD. 4 Our paper supplements these references in that it provides an explicit

construction of the vacuum which demonstrates that a superconductive QCD

vacuum not only is possible but actually exists.

The present paper is organized as follows. In section II we define the

model and show how it follows from the QCD Lagrangian. We perform the

analysis in the Hamiltonian formalism in the SchrO'dinger picture, discussed

in detail in references 5-7. The drawback of not being manifestly covariant

is outweighed by the fact that this treatment lends itself immediately to

achieving non-perturbati ve solutions. In this section we show how the

property of anti -screeni ng inherent in QCD leads to a aap, and we discuss the

conditions for the existence of the gap.

Even though an exhaustive description of the Mei ssner-Ochsenfeld effect

requires a correct treatment of the vacuum-baq interface we show in

section III that our present simple model already points toward the existence

of that effect. In section IV we discuss the effect of our neglect of the

center-of-mass motion and indicate that this leads to an error on the

conservative side, i.e., that our treatment yields a lower limit on the gap

size. We sketch the manner in which the physical vacuum condenses from the

perturbative vacuum in section V, using as an example the decay of a tt° into

two photons. We find indications for the existence of a universal time

constant for this process, or, equivalently, for a universal hadroni zation

time, similar for all hadrons. Finally, we give a summary of our results.
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II. The Gap

In order for the results of the model theory to have any bearing on QCD,

the model should contain as many as possible of the essential ingredients of

QCD. We now discuss our reasoning.

Firstly, we share the belief that the gauge sector by itself.

F
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yv yv ( 1 )
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a

yv
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y v
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v y

r abcgf ( 2 )

is incapable of yielding a gap since the Lagranqian (1) contains no scale.

Namely, if one should obtain from (1) a gap, say, A = 300, then this result

would mean simultaneously A = 300 eV and A = 300 GeV, which clearly is

impossible. In fact, the Fermion sector of QCD does contain scale factors in

the form of the quark mass terms. (The origin of the quark masses is still

rather mysterious; however this need not concern us here.) In a covariant

treatment the Fermion sector would intrude into the Boson sector via

modifications of the Boson propagators and the vertex functions. We now shall

describe how we approximate this effect in our treatment.

As explained in references 5-7, one may derive in the SchrO'dinqer

picture of the fields a field-theoretic SchrO'dinqer equation from the f i el d-

theoric Lagrangian:

H | S> = E | S> (3)

where |S> is the state vector describing an eigenstate of the system. We

break the Hilbert space into two parts and rewrite eq (3) as
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from which one may eliminate G to obtain

XF + Y
eTz

Y+F = H
0
F + H

eff
F = EF (5)

The form of the operators X,Y,Z depends on the division of the Hilbert space,

and in QCD also on the choice of the qauge. We shall take the space F to

consist of that part of the Hilbert space which contains only low momentum

transverse gluons, while G contains the rest of the Hilbert space, i.e.,

quarks, longitudinal gluons and high momentum transverse qluons. The precise

specification of F will beqiven below.

Supposedly the confinement problem is an infrared, i.e., low momentum

phenomenon. Hence it should be possible to divide the the Hilbert space such

that all high-momentum phenomena are taken care of in the space G. In other

words, one may hope that an approximate separation, asymptotic freedom-

infrared slavery, is possible in the sense that the "renormalized" parameters

calculated solely in the part G of the Hilbert space are reasonably indepen-

dent of the size of the part F, for "sufficiently small" F, while at the same

time F is "sufficiently large" as far as the description of the infrared

properties is concerned. As a consequence of this separation only the part F

of the Hilbert space must be treated non-perturbati vely; the part G could be

treated by perturbation methods. These considerations form the basis of our

model

.

Before discussing the specifics of our model we specify our choice of the

representation of the transversal vector field operators. 5-7 To wit, we

expand the (Schrffdi nger picture) field operators in terms of the complete.
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orthonormal, discretized set of vector spherical functions of good angular

momentum, J, and parity, specified by the index k = magnetic or electric,

i.e., the analogue of the multipole expansion of electrodynamics, augmented by

the color index a:

A = z(a
J<vma ^Jicvma

(r) + h.c.

)

( 6 )

The creation-annihilation operators fulfill

[a
jKvma* J' k' v'm' a' ]

•

«

jj‘ «' vv' mm' aa'
( 7 )

The discretization has been achieved by forming wave packets in the momentum

| k |
with a set of orthonormal weight functions specified by the index v. This

way the functions have a well defined finite mean square momentum <k 2
>,

which depends on v, and limited spread <k 4> - <k 2> 2
. At the same time the

functions have a limited size in position space, i.e., both <r 2> and <r 4> -

<r 2 > 2 have well-defined, finite values. We describe this size by the

parameter i1 - <r 2> computed for v = 1.

At this point we must specify the model. We shall test whether employing

a non-perturbative solution suffices for developing an energy gap for the

vacuum. To that end we make the simplest possible choice for F, and we

consider the particular coherent pairing state constructed with one of the

components of eq (6) only.

F
' |0>

-0/2 (a
Jkv Jkv )

|
0> ( 8 )
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where the dot indicates formation of a singlet in both Minkowski and color

spaces and, of course, we take v = 1. We have omitted in eq (8) the time

dependence; it will have to be added to achieve the complete Schrd’di nger

picture state vector.

This state contains an unspecified number of pairs. It connot be

achieved in a perturbative treatment as it is connected with the perturbative

vacuum |0> only by an infinite number of applications of the Hamiltonian.

The parameter 0 is a variational parameter which will be used to find a

(local) minimum of the Hamiltonian. For technical reasons, similar to those

in superconductivity it is advantageous to replace eq (8) by

-0/2 B.

F | 0> = e
d<v

|0> = |V> , (9)

B
iJkv

a, *a, ) .

Jkv Jkv' ( 10 )

This operator, (10) being anti -Hermiti an, respects the normalization of |0>.

At this point we should discuss the meaning of the Boson pairing state

eqs (8) or (9). A general creation term of the series (9) has the form

(a+ *a+
)

n
, i.e., it is a symmetric product of pairs, where each pair has

angular momentum and color zero (it is a singlet state). The solution thus

would describe a finite volume a 2 filled with the "physical" vacuum, floating

in a sea of the "bag" vacuum, i.e., a situation which may arise during the

cooling off of a quark-gluon plasma. Being constructed from a discretized set

of states the total momentum of an n-pair component, i.e., k = k^ + k
?

+ ...

k^
n

does not vanish. This "spurious center of mass motion" in principle can

be taken care of as explained e.g., in references 5 and 7; as we will discuss

below, this is, however, of no importance in the context of our question,

viz., the existence of a gap.
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We now describe the form of the effective Hamiltonian, eq (5), rewritten

as the variational problem

<F
|
X

|
F> + <F

|
Y Y+

1
F> = E (ID

6(<F|X|F> + <F | Y Y+
I
F>1 = 0 . ( 12 )

The first term of (11) is simply

H
0

= < |
k

|
> a+ a = a) a+ a , (13)

which defines the energy o>. It is the second term where the essential model

assumptions have to be made. To begin with, the form of F requires that the

number of Fock space operators be even. The simplest possibility is to allow

four operators, as shown in figure la. In principle, the effect of very

complicated high-order qraphs can be contained within this limitation.

To write the simplest possible four-field vertex we take a hint from the

effective Euler-Heisenberg Lagranqian for the vacuum polarization in QED, 8,9

which reads

This form was derived as a local approximation to the non-local higher order

corrections, and hence is valid for low momentum transfers, » in the long

wavelength limit. Here m is the electron mass. Equation (14) is written in

terms of the field strengths E. We now assume for our case, replacing the

field strengths by the potentials, the effective force to be of the form

/ d 3x H ..QED = / d 3x E
4

eft ir ? 415tt z m 4
(14)
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Y
E^Z

Y+ " H
I

= g4 £ ( JlM )~ 4
J d3x :[A*A][A.A]: = a / d 3x :[A.A] 2

: . (15)

In this expression M is the scale reflecting the quark masses, which, in

principle, could be computed; l is the above defined size parameter of the

functions K; e is a sign to indicate "attractive" or "repulsive," which, as we

will show below, leads to infrared slavery or infrared freedom, and g is the

effective couping constant, appropriate to the momenta relevant for the

space F. It again contains a scale. A, which is associated with the quark

masses, and can be written, as usual.

q
2

T2
loq

(16)

where k
2 is some typical momentum transfer. The form (14) is supposed to

encompass also the effect of the 4-field term of order g
2 contained in eqs

(1), (2). This completes the description of the model.

We note here that in QED the sign e is positive, consistent with short-

distance screening of the charges. In QCD the vacuum polarization has the

anti -screeni ng sign e = -1; we can expect that the term (14) representing a

more general class of graphs will retain this sign.

Note that for e = -1 our effective Hamiltonian is not positive definite,

i.e., the Hamiltonian H
0
+ H^ is not bounded from below. Therefore, one

cannot expect to achieve a stable vacuum state. This, of course, is also true

•k

if one takes for Hj the attractive QCD Coulomb force. Since the original

*This is in contradiction with the result of reference 10 where a stable

minimum for the vacuum state was reported.

8



Hamiltonian presumably is bounded from below the effective Hamiltonian (13),

(14) most certainly is an insufficient representation of the effective force

H ^ of (5). To achieve a bounded Hamiltonian one has to continue the

expansion implied by (14). To that end we add the sixth-order term

H n = q
6 M V / d 3 x : ( A • A) ( A »A) ( A «A) : = & SL

2
/ d 3 x : (A -A) 3

: (17)

where we have introduced the dimensionless interaction strength parameter 6.

As we will show below the nature of the results is independent of the actual

magnitude of 6 over a very wide range of values.

In order to solve our model we introduce the Boson analogue of the

Bogoliubov quasi -particle transformation 11 ’ 12 by writing

b = c a + s a+ (18a)

b+ = s a + c a+ (18b)

together with the demand

b | V> = 0 (19)

where |V> is taken to be of the form (9). A straight-forward calculation

yields the conditions

c = coshe (20a)

s = sinhQ (20b)

9



for eq (19) to be fulfilled. We now look for the best solution achievable with

the form (9) by searchinq for the minimum energy:

f = fe<V|H|V> = 0 (21)

To evaluate (21) we re-write the Hamiltonian in terms of the operators b,b+
,

5^ = [
-i + a P + 6Q(x - 1)] (x - l) 2 + R . (22)

Here S is the statistical factor

S = 2 x (N 2 - 1) = 2 x 8 = 16 (23)

where the indicated numerical value is that valid for SU(3). Further,

20
x = e (24)

and

P = 3(S + |)
1 50

3 j
( Z(o)

2 "
( Zcj)

2 (25)

r, _ 3 ( r . 2 1 ( r . 4 1 26 1 n
Q 7 (s + -j) (s + 3 ) T *3

p (26)

R =
I x

:b+b: + [° + 36 ( S +
f) to <x - !) ]

X 2
- [D *0]

2
:

+
5 ( tu) H x : [ D,D ]

3: (27)

with

D = b + b+ (28)
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Owing to eq (19) the contribution of R to the expectation value (21) vanishes.

Since x > 0 one sees from (22) that indeed a non-trivial solution, i.e., 9*0

requires a < 0. Also, in that case for 6=0, as expected, H -* - » for x > «.

On the other hand, any 6 > 0 stabilizes the Hamiltonian. In figure 2 we show

the function defined by (22) with R = 0 as a function of 0 for several values

of the parameters a and 0. Note that the principal minimum at 0 < 0 is

essentially independent of the value of 6 as long as 3 is larger than the

value for which the secondary minimum is higher than the principal minimum,

i.e., if

0 Q > 1 . (29)

Also note, that the principal minimum, i.e., the minimum at x < 1, i.e.,

0 < 0, occurs for

a P < - 1 . (30)

Recalling (26) one sees that the inequality (29) very probably is fulfilled if

(30) is fulfilled. Of course, a definite statement must await the required

QCD calcul ations.

At this point a discussion of the physical implications is in order.

Regarding (30) and (15) superficially, it seems that the size of the physical

vacuum is limited, i.e., that by increasing £, |a| diminishes and at some

point (30) can not be fulfilled. This conclusion is, however, erroneous.

Namely, when enlarging £, the limitation of the expansion of the fields to the

single term, (9), (10), becomes untenable, and an increasingly larger number

of terms of the expansion (6) must be used, and will contribute to the

11



physical vacuum state. This in effect will be equivalent to increasing the

value of the statistical factor S, eq (23), and will compensate for the

dependence of the individual matrix elements on l. On the other hand, when

decreasing i the effective coupling constant, eq (16), will decrease, finally

leading to the violation of (30). Again, unfortunately we must defer a

quantitative discussion to the time that sufficietly accurate QCD calculations

become available. Finally we note that |V> is not an eigenstate of H since

the Hamiltonian connects states which differ in the number of quasi-particle

pairs, i.e..

<V | H | V . >
n n±v

* 0 v = 1, 2, 3 (31)

where

|V
n
> = (b+b+ )

n
|V> (32)

By di agonalozi ng H in the space of the functions |V
n
> one can obtain an

improved form for the physical vacuum. In view of the form (9) of |V> it

might be advantageous in the di agonal ization of H to use instead of (32) the

form

L
(

1 / 2

>(eB)e-<
e/2

> B
|0> (33)

which may be a better approximation to an n-quasi-pair state than (32). In

(
1/2

1

eq (33)
;
(x) is the (normalized) Laguerre polylnomial and B is given by

eq (10), dropping all indices. We shall not perform this calculation here in

view of the absence of a QCD calculation for the interaction strengths of the

effective Hamiltonian (22).
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III. The Meissner-Ochsenfeld Effect

In order to achieve color confinement the physical vacuum |V> must

support a color Meissner-Ochsenfeld effect, i.e., it must follow from the

properties of |V> that in the bulk a presence of a color field is incompatible

with the existence of |V>. Of course, in analogy with superconductivity one

must expect that color fields penetrate a certain distance into the physical

vacuum in order to achieve the shielding of the color electric and magnetic

charges and currents. In other words, the understanding of the confinement

problem demands an understanding of the transition region |0> <-•* |V>, i.e., of

the structure of the "bag" surface, or, equivalently, of the vacuum-bag

i nterf ace.

In order to be capable of describing both an interior and a surface one

must retreat from the extreme simplification (10) for F. Therefore, in order

to be able to describe the Meissner-Ochenfeld effect, the single-particle

function in (6) must be made more flexible, at least by replacing by

N

K > G = T c K (34)
V L

, V V
n=l

The c^ are variational parameters to be determined by a self-consistent

solution of the now shielded external field and G, as explained, for example,

in Chapter II. 4 of Reference [12]. The size parameter I in the functions K

here will have to be chosen to be of the order of the radius R of the vacuum

droplet, while the required number of harmonics, N, will be given by the ratio

R/d, where d is the surface thickness. By changing N and finding where the

results stabilize one thus can determine the surface sturcture.
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After having obtained this new set of "one-body" fields, eq (34), one can

repeat the analysis of the previous section to obtain the Bogoliubov quasi-

particle vacuum in terms of the function (9). This vacuum again supports

quasi -particl es, and shows a gap in the energy spectrum. As is well known,

these characteristics are sufficient to insure the existence of the Meissner-

Ochsenfeld effect. 12 The proof of that reference that in first order in the

external field no quasi -particles are excited thus holds also in the present

case and this completes the demonstration that our model vacuum has the

expected characteristics.

One could carry the analysis further to compute the critical field

strenqth (see, e.g.. Ref. 12, Chapter II. 5), but we shall not do that here in

view of the absence of QCD calculations of the coefficients a, 6 of eq (15),

( 17 ).

IV. Center-of-Mass Motion and Boost of the Solutions

Upon solving eqs (21) with (9), (10) one achieves an approximation to the

solution of eqs (11) and (12). Being only an approximation the solution

inherently will have inaccuracies. We now will discuss the properties of

these solutions.

The first point concerns the energy of the solution |V(t)>, which here we

take to be (9) augmented by its time dependence. The expectation value (22),

<V(t)
|

H |V(t)> = E
v

< 0 (35)

cannot actually be the physical eigenvalue of the vacuum. Even more strongly,

in the utilized quantized form all energies must be non-negative. The result

(35) simply implies the need for a kind of gauge transformation. It is

14



equivalent to the case of classical electrodynamics where one can shift the

energy scale arbitrarily up or down by the addition of a constant scalar,

i.e., time-like, potential, i.e., by a global gauge transformation. The same

can be done here by a re-definition of the phase of the state vector |V>:

+iE t

|V 0 > = e
v

|V(t)> ; (36)

with this phase the new state vector obeys

It IV 0
> * o . (37)

Remembering that we work in the Schrb’dinger picture this then yields for the

vacuum energy

E
0

= 0 . (38)

At the same time the perturbative vacuum acquires the energy |E |. More

precisely, the number |

E

v
|
actually is the energy needed to replace |V

Q
> by

|0>, and since in our model system the state |V
0
> occupies only a volume i 3 in

position space, the number |

E

v
|
actually represents an energy density

(39)

With this normalization one might think that the state |V
0
> would be

boost-invariant, if each pair in (10) would have i<\ + i< 2
= 0. Namely, the

momentum four-vector would be

15



(40)P = (E,k) = (0,0)

which indeed remains the same in all frames. However, the question of the CM

motion is somewhat more subtle.

Namely, it is relatively easy to achieve a state where the CM momentum

vanishes. For example, the gluon pair e
x
e
lkZl

e
x
e~

lkZ2
, i.e., a two-gluon

plane wave state where the gluons have opposite polarizations and momenta,

indeed has + k 2 = 0 and vanishing field strength. Of course, its center of

mass position is not fixed. The difficulty arises from the fact that in a

finite-size system one requires the knowledge of the CM position, since the CM

position must coincide in all components of the state |V
0
>. For a state

containing N particles the CM position operator is an N-body operator. 5 ’ 7

Since our state |V 0 > is a superposition of configurations containing arbitrary

numbers of particles the calculation of the CM position would be arbitrarily

complicated. However, as our present model has only a qualitative signifi-

cance the only question of interest is, whether or not the inaccuracy

associated with the CM problem would invalidate our qualitative result,

the existence of a gap. We now would like to present an argument which

indicates that this in fact does not happen, U

e

_. ,
that only a numerical

inaccuracy results from the errors in the treatment of the CM motion.

Our reasoning is as follows. The Hamiltonian, eqs (13) and (14), is

transl ational l.y invariant. Any inaccuracies of the results associated with

the CM motion arise from the truncation of the Hilbert space. Now, if two

components of the state |V
0
> have CM-s which do not coincide then one must

expect that the size of the matrix element of H is diminished from its correct

value, i.e., the value which would obtain when the CM-s coincide. Hence the

16



computed off-diagonal energy is a lower limit to the actual off-di agonal

energy, j_^e., the error is on the "conservative" side, and the calculated gap

represents a lower limit on the actual gap size of the model.

V. Time development

An important characteristic of the physical vacuum is the time it takes

for it to be formed. For example, upon the decay of a hadron into leptons or

photons the perturbative vacuum disappears by being replaced by the physical

vacuum. Since this process involves a change in the structure it can not

happen instantaneously. We shall here sketch the description of this process,

and, in particular, we consider the development of our physical vacuum

droplet, say, upon the annihilation of a qq pair, e.q., a tr°, into photons.

The reason one has to consider this process is that the vacuum state |V>

is connected with the perturbative vacuum |0> in a non-perturbati ve manner.

The usual procedure of the graph expansion of the time-dependent perturbation

theory is thus not feasible. A direct treatment is therefore called for.

Quite generally, maintaining the restriction (9) to a single one-particle

state, the vacuim state vector is given by the expansion into quasi-pair

states (33)

|V(t)> = I C (t) |V
n
> (41)

n

where the parameter 9 contained in (9), (10), may be taken to be either time-

dependent or time-independent owing to the completeness of the set (33) with

fixed 0. At any rate, the time-dependence is governed by

ft
IV(t)> * -i H I V ( t ) > . (42)

17



This Schrtfdinger equation can be solved by a time-dependent Bogoliubov

transformation, i.e., by the transformation (18) where the coefficients c, s,

are taken to be c-number functions of t. The condition (19) then can be

fulfilled at each instant in time, and all results remain formally the same;

onlv the parameters become functions of time, as already indicated in (41).

In particular, the form of the Hamiltonian (22) remains the same. Note that

the time-dependence of the unitary transformation (18) renders the Hamiltonian

only superficially time-dependent. Hence all the conservation laws remain

3H
valid; in particular = 0, and energy is, of course, conserved.

We now sketch the solution of the time-dependence of the vacuum by

invoking the sudden approximation. To that end we consider 0 in (41) to have

the asymptotic value given by (21), and we have at t = 0, i.e., at the time of

the emission of the annihilation photons, the perturbative vacuum.

|V(0)> « |0> -.1 C
n
(0) |V

n
> . (43)

Since the individual components of (43) have a time-dependence given by their

respective energies the higher terms will interfere away in a time given by

the quasi-pair excitation spectrum. An exponential decay into the physical

vacuum arises here in view of the continuum of the final state (of the emitted

y-rays in our example) in the familiar manner upon integration over the

energy.

Note that this time development is associated only with the

characteristics of the vacuum state. Hence this time constant should be

essentially the same for all processes, or, in the time-reversed sense, all

hadroni zation times should be about the same. The only differences can arise

from slight differences in the initial conditions (43), which a priori can not

be excluded.
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In summary, we have demonstrated that in our model which we believe

reflects with sufficient accuracy the infrared aspects of QCD, a non-perturba-

tive vacuum exists which exhibits an energy gap and which repel Is color

electric and magnetic fields. Thus this vacuum has all the characteristics

required for color confinement.
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FIGURE CAPTIONS

Fiq. 1 (a) Graphs represented by (14).

(b) Graphs not contained in (14).

Fig. 2 Vacuum energy, eq (22) with R = 0, for some values of the

parameters. a/(JU)) 2 = -0.1. B/(itw) 3
: (a) 0.006; (b) 0.1; (c) 10.
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